Terminology

- 1. Crude Oil: Liquid petroleum extracted from the Earth (barrels, bbl)
- 2. Natural Gas: Mixture of hydrocarbon and non-hydrocarbon gases extracted from the Earth (ft³, cf)
- 3. **Tight Oil**: "Also referred to as shale oil. Oil contained in <u>shale</u> and associated <u>clastic</u> and <u>carbonate</u> rocks with very low <u>permeabilities</u> in the micro- to nano-darcy range. Typically produced using horizontal wells with multistage hydraulic fracture treatments." (<u>darcy = unit of permeability</u>)
- 4. **Shale Gas**: "Gas contained in shale with very low permeabilities in the micro- to nano-darcy range. Typically produced using horizontal wells with multistage hydraulic fracture treatments."
- 5. Condensate: Liquid hydrocarbon extracted with natural gas from the Earth (barrels, bbl) (gas-well oil)
- 6. **Casinghead:** Natural gas extracted with crude oil from the Earth (ft³, cf) (oil-well gas)

A Summary of J. David Hughes' Micro-Analyses

Drilling Deeper: A Reality Check on U.S. Government Forecasts for a Lasting Tight Oil & Shale Gas Boom

"Drilling Deeper reviews the twelve shale plays that account for 82% of the tight oil production and 88% of the shale gas production in the U.S. ... It utilizes all available production data for the plays analyzed, and assesses historical production, well- and field-decline rates, available drilling locations, and well-quality trends for each play, as well as counties within plays. Projections of future production rates are then made based on forecast drilling rates (and, by implication, capital expenditures). ... This report finds that tight oil production from major plays will peak before 2020 ... Barring major new discoveries on the scale of the Bakken or Eagle Ford. ... Shale gas production from the top seven plays will also likely peak before 2020. ... Barring major new discoveries on the scale of the Marcellus ... Over the short term, U.S. production of both shale gas and tight oil is projected to be robust—but a thorough review of production data from the major plays indicates that this will not be sustainable in the long term. These findings have clear implications for medium and long term supply, and hence current domestic and foreign policy discussions, which generally assume decades of U.S. oil and gas abundance."

The major fracking plays are:

- Tight Oil
 - Bakken in North Dakota and Montana
 - Eagle Ford in Texas
- Shale Oil
 - Haynesville in Louisiana and Texas
 - o Marcellus in Pennsylvania and West Virginia

Tight Oil Fracking

"Based on production history, drilling locations, and declining well quality, this report found that 98% of the <u>EIA</u>'s projected production from these seven plays has a "high" or "very high" optimism bias.":

Play	Average 3-Year Wel lay Decline Rate	
Bakken	85%	
Eagle Ford	79%	
Spraberry	60%	
Wolfcamp	81%	
Bone Spring	91%	
Austin Chalk	85%	
Niobrara	90%	

The seven major tight-oil plays also involve extraction of natural gas:

on a "barrels of oil equivalent" basis.⁸

The Bakken's and Eagle Ford's EURs per well are two to more than six times the EURs per well of the other five plays. If only horizontal wells are considered, the Bakken and Eagle Ford EURs per well are 39% to 141% higher than those of the other five plays (see discussion in Section 2).

Figure 2-7. U.S. tight oil production by play, 2000 through May 2014.¹³ The Permian Basin, which is made up of several plays (the largest of which are noted), is the third largest projected source of tight oil.

In this "Most Likely Rate" scenario, drilling continues at 3,550 wells/year, declining to 2,000 wells/year.

		0	100			
N hh		-nc	Hro	C	71 n	O
JIA		uas	rıa	L		2
	_			_		~

Play	Average 3-Year Well Decline Rate	Average First-Year Field Decline Rate
Barnett	75%	23%
Haynesville	88%	49%
Fayetteville	79%	34%
Woodford	74%	34%
Marcellus	74-82%	32%
Eagle Ford	80%	47%
Bakken	81%	41%

"Most Likely Rate" scenario: drilling increases to 400 wells/year, declining to 300 wells per year. "Low Rate" scenario: drilling continues at 300 wells/year, declining to 250 wells/year. "High Rate" scenario: drilling increases to 550 wells/year, declining to 300 wells/year.

Figure 3-99. "Most Likely Rate" scenario of Marcellus gas production including both Pennsylvania and West Virginia.

Figure 3-112. "Most Likely Rate" scenario of Bakken gas production in the "Realistic Case" (80% of the remaining area is drillable at three wells per square mile).

This projection assumes that well quality for gas production will parallel well quality trends for oil production as drilling moves into lower quality parts of the play.

producing by 2040 in this scenario. Also shown is the EIA's production data for dry gas through August 2014 for these plays.¹⁷⁵

Roper Macro-Analyses for U.S. Oil and Natural Gas Extraction http://www.roperld.com/science/minerals/FossilFuels.htm

The curve's final peak has a decay exponential time constant 4.4 times the rising time constant, similar to the case for Hughes' micro-analysis for tight-oil fracking in the U.S.

The curve's final peak has a decay exponential time constant 3.5 times the rising time constant, similar to the case for Hughes' micro-analysis for shale-gas fracking in the U.S.

The curve's final peak has a decay exponential time constant 5 times the rising time constant, similar to the case for Hughes' micro-analysis for tight-oil fracking for the Eagle Ford play.

The curve has a decay exponential time constant 3.4 times the rising time constant, similar to the case for Hughes' micro-analysis for tight-oil fracking for the Bakken play.

The curve has a decay exponential time constant 31.6 times the rising time constant, similar to the case for Hughes' micro-analysis for shale-gas fracking for the Marcellus play.