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Introduction

7]

e A contravariant vector is one which transforms like V¥ = where X* are the coordinates of a particle at its

dr

proper time7 . |[X* = (ct, X, Y, z) = contravariant spacetime|.

do
e A covariant vector is one which transforms like CDH = d_” , where @ is ascalar field. Note the placement of
X

the index being upper for a contravariant vector and being lower for a covariant vector.

— — 1 1 —_ H
x, = (—ct, x, y,z) = covariant spacetime|. |x, =7,,x"|, where
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Ny = = metric tensor or Minkowski tensor.
f 0 010
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* Arepeated index implies summation; e.g., |g,, X" = Zgﬂvx” and oy =Y,
v=0

e The tensors described below are of rank 2 because they are related to the spacetime vector, I, = (—Ct, X, Y, Z),

a tensor of rank 1. A rank-2 tensor can be represented by a 4x4 matrix.
e Coordinate time = time between two events as measured by an observer’s clock.

e Spacetime Metric Equation = |ds® = —dt® +dx’ +dy* + dz* = n,,0X“dx" =7, dx* dx™ | is invariant for all

inertial reference frames (IRF); it is equivalent to the Pythagorean Theorem in plane geometry.
o Spacelike if ds’>>0; Lightlike if ds’=0; Timelike if ds’<0.
e Proper time = time as measured on a time-like world line by a clock moving along that line.
dr =+/—ds? = |dty1-v? =dz|.
e A-B=p, AA"and A=A-A.

Qif u=v
e Kronecker Delta: 5“ =| . .
lifu#v
o Coordinate Basis: u, v, w & ; e, is tangent to w curve increasing u; e,, is tangent to w curve increasing w.

o €,-€e, may be nonzero; e, may not have unit length; e, may change in magnitude or direction.

— . _ . 2 _ v _ V. _ H
o A=A, ds=dx"e,;|ds" =dx“dx"ee, =g, dx“dx"|; g, =metric tensor.

o dx“ =90 x"dx";|A¥ =9 x" A"; A“ =0, x*A";|0, X" 0. x* =5 |

o ds*=g', dx"dx"=g,dx"dx";|g", =0, x0,x"g,,landg, =0,x“0,x"g",,.
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o Inverse metric tensor: |9“g,, =9 9., =0" [[|9"" =0,x"0,x" g7
Tensors
Rank n| # Components | Other Name Symbol | Transformation Law Example Quantities
0 4°=] (invariant scalar) | ¢ Q= Rest energy m
1 4'=4 ok A4 w _ ox™* A four-velocity u”
ax four-momentum p*
v adi ’) F a erals
G A, A, = g:p A gradient 9,9 of a scalar
X
2 4=16 tensor 0 T = ax' ax" 79 Inverse metric g
" ax? EM field tensor F**
- T = e’ T Stress-energy tensor 7%
) v ~ a AV
ax 0-; Kronecker delta 8%,
v ax” ax Metric tensor g,
T T = g SOr £
. Gl o Ricci tensor R,
Einstein tensor G,
3 4'=64 tensor - , % ax™ ax° (no obvious examples)
Al[.la M yra = Orﬂ ax (—).T’" Alpya plcs
ax” ox? ax
4 44=256 tensor R ROy = x™ ax® ax® ax* R Riemann tensor R g,
B Buv a’ ax” ax’” ax” S0l
MUV ... _ o W T K By ...
T, = 0,X"0 X" .0, X0 X.T7
Operation Example Result Comments
tensor sum pl+ pi = pt, | tensor of same rank | Addition is defined only between tensors having the same
rank and index positions, and whose corresponding compo-
nents have the same units.
tensor product A#B, = M*, | tensor of rank n, + n, | The components of the resulting tensor are the products of
all possible pairings of the input tensor components. The
values of n, and n, are the ranks of the input tensors
contraction over an R%yay =Ry, | tensor of rank n—2 | Starting tensor must have a rank > 2, and the sum must be
upper and lower index over an upper and lower index
raising an index g"*Ray = R¥, | tensor of same rank
lowering an index guaT™ =T, | tensor of same rank

1. Anindex that is repeated twice within the same term, and where one instance is upper and the other lower, is
to be summed over.

2. Avrepeated index must not occur more than twice within a single term.

3. Anyindex that is not repeated must occur in the same position (up or down) in all terms in an equation.
(Exception: it’s allowed to set a tensor expression to zero.)

4. Any repeated (otherwise known as ’dummy’ or ‘bound’) index may be renamed to any other symbol, provided it
doesn’t violate any of the other rules.

5. Any single (otherwise known as ’free’) index may be renamed to any other symbol, provided that symbol also
occurs once only in each term.



Natural Units in General Relativity

c=3x10°ms ' =1=c=>k=3x10%, | :111{5,'2 =0.111x 10 6m™?

axipn-11_3, -1 _-2
f=G=11=6=-0%10 mk s _1h742x10kgPm=1

. 3x10%m?s~2

5o, convert the units of any kinematic variable using

=3x108mland kg = 0.742x 10 *'m

(%41

_ 42x10~27 -3
p=kems™! = %m =2.4733 x103%m

3= 10

- 1 074010 2 -y 16
L=kgm?s'=0182210" o =2 4733 %10 *m

310"

Special Relativity

t'=y(t-px) t=yp(t'+px’)
X'=y(-ft+x) ij/(,Bt—li-X) whereﬁ:\i and y = 12
y =y y=y C 1-pB
7'=12 z2=1'
t Yy —vyB 0 0]t
x| |[-¥yB v 0 0]|«x B 1
y =1 o 0 1 o]ly where Y = f, —}32
z 0 0 0 111z
At Yy —yB 0 0]At
Ax'| [-yB vy 0 0 |[Ax
Ayl | 0 0 1 0||Ay
A7 0 0 0 1Az
o _ [x} [ cos@ sine}
Rotation in Newtonian space x-y plane: = ) .
y'| [-sin@ cosé@

{t'} { coshd —sinhé
Rotation in SR (t,x) space: =

= ] , Where cosh @ =
X' —sinh@ cosh@

=y & sinh@ = py.

1
N

—dt ?+dx”? = —p* (dt— Bdx)’ + 7 (= Bdt+dx)” = * ( A7dt* — A7dx* + dx® — dt” — 2 Adtdx + 2 Bdtdx) =
Note that 1

"7

[—(1—,32)dt2 + (1—/32)dx2] =—dt® +dx?; i.e., ds® = —dt® + dx’ is invariant.


https://en.wikipedia.org/wiki/Natural_units#Planck_units
https://en.wikipedia.org/wiki/Natural_units#Planck_units

_V. =K=7(_ﬂdt+dx)= —fB+dx/dt _ v, — .
“odt' py(dt—pdx) 1-p(dx/dt) [1-pBv, |

Cdy' dy dy/dt vyN1-8

VTt p(dt-pdx) p(L-p(dxid) | 1-pv, and

. dz' dz dz / dt v,\1- 2 v

T T (Ao pdx) p (- p(axdd) | 1-pv, |

Velocities transform as: | V

For a constant force, see https://xphysics.wordpress.com/2010/11/07/relativistic-acceleration-due-to-a-constant-force/.

For other forces, see http://www.reed.edu/physics/courses/Physics411/html/page2/files/Lecture.11.pdf.

Spherical Coordinates

(rf B? IPJ

St

e

[ X

|x: rsindcose, y=rsin@sing, z=rcosé|.

Unit Vectors

I =sin@cos X +sin #sin @y + cos 67

6 =cosdcos@+cosdsinpy—sinoz |.
@ =—Sin X + COS py

Line Element

c’dz? = —c’dt® +dr’ + d@* +d?|.

Parabolic Coordinates
p(x, y) = X; g(x, y) = y —cx?, ¢ = constant.
x(p,q) = p; y(p,0) =cp® +0.


https://en.wikipedia.org/wiki/Velocity-addition_formula
https://xphysics.wordpress.com/2010/11/07/relativistic-acceleration-due-to-a-constant-force/
http://www.reed.edu/physics/courses/Physics411/html/page2/files/Lecture.11.pdf
https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://en.wikipedia.org/wiki/Unit_vector
https://en.wikipedia.org/wiki/Line_element

Four Vectors
4-Displacement: dS = [dt, dx, dy, dx]

4-velocity: [u=ds/dz|=[dt/dz,dx/dz,dy/dr,dz/dz]=|[u',u*,u”,u* | =u|

u y =y 0 0||u
u X _ 0 O X
Transformation to a new IRF: = 7ﬂ y u
u” 0 0 1 0||luY
u' 0 0 0 1|u?

Scalar Product of 4-vectors
A-B=—AB'+ A'B*+ A’BY + A’B? & A2 = A- A=—A'A" + AXA*+ AVAY + AZA?,

ds-ds =ds® = —dt® + dx* + dy” + dz>.

3-Velocity
Since|d7 = dt'=—ds? = dty1-v? =dt/y|, .'.u:[ut,ux,uy,uZ]:y[l,vx,vy,vz] & u-u=-10-mass u-u=0|

v:[vx,vy,vZ]:[ux,uy,uzjlut; Forv<1l:u :[1,vx,vy,v2], forv=0:u=[10,0,0].

ULtV _«/1—V2U'y _xil—vzu'Z

T+w', "

X

T+w', " 1+w',

4-momentum

p=mu=[p'p*p",p*[=rm[Lv.v,.v, | &|p-p=miu-u=-m

N

0O mass: p-p=0|

Forv<1:p*~=mv, p’ =mv, p* ~mv,. 4-momentum is conserved.

Relativistic Energy and Momentum

Relativistic energy: |E = p' = ym|; Relativistic momentum; p = ( P.p, pz)z ymv |, |E? = p°+m?|;|Vv=p/E]|

For Vl:E=m+mv®/2+..;y=1+V*/2+3v*/8+...

Define kineticenergy: E=m+K =ym - |K = m(y—l) .

4-momentum of Light

p= E[l,v Vv,V ] as well as for all objects. Photon rest mass = m = \/’EZ —p? =EJ1-V? =0since v=1.

x1 Vyr ¥z

Energy in Observer’s Frame: —P Uy = —(— p'-1+p- 0) =p'=E.

Since the scalar product is IRF independent, it can be calculated in any IRF.



Einstein General Relativity Equation

G*" +Ag™ :—87[4G T =xT""|, where
c

1 . . .
G" =R" _E Rg“"|= Einstein tensor, A = cosmological constant, g = metric tensor,

B e 3 ol 5 - b
G = Newton gravitational constant, T, = stress-energy tensor, (R,, =R;, =R, |= Ricci curvature tensor,

R/w — g,uﬂgvaR

S ——
o R=0""R = Ricci curvature scalar|,

P, _ P P P TC P TC — R
R, =0,I, -0, +5, 7 - T'7 = Riemann curvature tensor |,

Ao~ vu
R _..=g R” RY —16 R
iy = Bp v /liV_E M

where |I'%, = Christoffel symbol :%gp’l (6,9,,+0,9,,-2,9,,)}

Riemann Curvature Tensor Properties

R,uvaﬂ = _Ryvﬁa = _Rv,uaﬁ’ Ryvaﬁ = Raﬂyv'
R.vep + Ruapy + Rypi, =0 = First Bianchi ldentity =R ..
Rivapy + Ruvars + Rupye =0 = Second Bianchi Identity =R, , |

Conservation of four-momentum: V#T =0 V#G”V =0| if A =constant.

The cosmological constant can be moved to the right side as the vacuum stress-energy tensor:

T =— Ac’ g*" = p,..c°g*" where p,. = vacuum energy density = Ac”
(vac) 87G vac vac 87G

~0.7x10%°kg / m* <10 'kg/m®.

Then: |G* =87G (T* + T/ ) =8zGT,;"; Alternate: |R*" =8zG (T;" —g*'T,, ) where T =g, T* =T/

vac all all

Ag””
872G

vac

Note: T/ —% 9“ T = (—Ag’” +%g‘”4Aj/(8ﬂG) =

Einstein equation is 10 nonlinear, usually coupled, 2"-order differential equations to solve for the metric!

Symmetry with regard to coordinate changes — conservation of energy and momentum (Noether’s Theorem).

1
Alternate Form of Einstein’s equation: |R*" = K[T’W =3 g‘”’TjJrAg”v .



https://en.wikipedia.org/wiki/General_relativity

Spherical Surface of Radius R

ds* = r*d@” +r’sin” 6d¢°T";,

R9¢9¢ = _R9¢¢9 = _R¢99¢ = R¢9¢9

Christoffel Svmbol Properties

=r?sin? @, other R

=0,R, =1 R, =sin® 0, Ry,

afuv

— s b9 — -
=-—singcosd, Iy, =T, =cotd, other I, =0
=R,

Has 4x4x4 = 64 symbols

Symmetric: Fl

=T

; therefore 40 independent symbols, but only 10 are unique

vu?

e Unique symbols are tt, tr, t0, tg, rr, r6, ro, 69, 69, P.

o I, =0foru=v=+a

GM 2GM ™
ri-r, =% (1_ r j

Covariant/Absolute Derivative

Curvilinear coordinate system unit vectors change over space:

aﬂea = ijev

Vector A: dA=d (A“ey)

Covariant or absolute derivative:

=0, R=2/r?

TV A=A

Viia |

Tensor of rank 2:

Tensor of rank 3:

Solving for the Metric

AL =AL 4+ Tg, A% 4+ T, AM

VI =0T

uTBv v T uo
+1“0chr +I T/

aoc 'y

-1, 7|

1. Use symmetry to define a coordinate system as completely as possible.

2. Set up a trial metric with as few undetermined coefficients as possible.

3. Substitute the trial metric into the Einstein equation.

4. Solve the resulting differential equations for the unknown metric components.

Spherical Symmetry

Trial metric: ds? =

—A(r,t)dt® +B(r,t)dr®+r? (d¢92 +sin? 0d¢2).

The result is the Schwarzschild metric given below.

(0,A“dx” )e, + A“de,dx” =|(8, A +T% A" )e,dx* =(V,A“ e, dx*
V A=A +T% A" =A%\ Covariant vector: |V A =A |
'Ip.'p = '],ub A rff,- Agy = rg;;{ufx
Ay =AY+ Th, A% —T% AL



https://en.wikipedia.org/wiki/Christoffel_symbols
http://eagle.phys.utk.edu/guidry/astro616/lectures/lecture_ch16.pdf

Empty-Space Metric

2
dr "

dx”

g#vz

Equation of Motion/Geodesic

-1 0 00
1
0 00 where dr® =dr“dr, = —c*dt® +dx* + dy* +dz* .
0 010 #
0 0 01

The equation of a “free” particle follows a “straight line” in curved space whose curvature is caused by the presence of
energy/mass. Such a “straight line” is called a geodesic. A “free particle” is free of non-gravitational interactions.

. . . . o . - |d?x¢ du”
The geodesic equation or equation of motion for a particle with rest mass in a local inertial frame is 072 = q =0l
T T
In another frame:
0_dU”f’_i axauy _oxrdur o d (oxT) D ax” du” .0 X \dx”  ox” du” . 9 ox“* U
dr dr{ox” dx” dr dz{ ox” dx” dr ox*\ ox" Jdr dx* dr ox* \ ox” '
. ox” _ _
Multiply by v and change & to «:
X
B a a a 7 B 28 u v
:8x ox” duU u O [ OX U l=s? du UMY = du +Uﬂuvrﬁvzd x2 dx* dx ol
ox* | dx* dr ox*\ ox” “odr “ dr o dr dr dr “
B a B a B 2 a P P
where ox” Ox _sP X" 0 [ox" ) _|ox 07X _ ’fv=1 of 8gw+ 9o Y .
ox” dx* a ox* ox“ | ox¥ ox* ox“ox” " 2 ox*  ox"  ox“*
d*x* . Odx” dx” 24 2 2442 2 2 2_ LAV .
d—z_zz—Faﬁ d_z-d_z- where c°dz” = —c°dt” + dx +dy +dz —ﬂﬂvdx dx”. r= proper time.

This can be rewritten in terms of observer’s time coordinate, t = x°:

If the particle’s velocity is small the equation reduces to

d2x*

L Ox*dx” o odx® dx” dx”
T ———— 4T, ————|
dt dt dt dt dt

dt?

2N

=-I"g, where n=(1,2,3).

Other forms of the geodesic:

For free space: g, = diagonal (-

dt?
o0 (g o)1,
de\ " dr ) 2“7 dr do |
d?x” Y 1 ,
z_z :_g}’ (avgay_aéagpvju”u '

v

dx
7 G dr

11,11). so, ,9,, =0; then 0-4

‘o

dx”

= constant.
dr



https://en.wikipedia.org/wiki/Geodesics_in_general_relativity
https://en.wikipedia.org/wiki/Proper_time
http://pages.pomona.edu/~tmoore/grw/Resources/GRWBook.pdf

So, the velocity is constant, as it should be for free space (except for the object being considered).

Newtonian (weak-field) Limit

Conditions
1. Particle velocity is small compared to c.
2. Gravitational field is weak; a small perturbation of flat space.
3. Gravitational field is static, constant in time.

dx'  dt 2x- i
Condition 1 requires that — << —. This reduces the geodesic equation to d X2 +I'G, [Ej =0.
dr dr dr dr
Condition 2 requires that |g,, =77, +h,, | for ‘hw <Lh, =h ; g*=n"" —h*" where h*"= n"’n"’h
- . 1 .
Condition 3 yields I'y, = > 90,90,
1 S |
Then T4 =—=71**0,h,, and d XZ = Malhoo dt :
2 dr2 2
d’t dt _ _— o diX 1
Since Jyhy, =0 then —=0and — = constant. Since 77; = 3x3 identity matrix: —-=—-0,hy,.
dr? dr dz® 2

This corresponds to the Newton gravity equation if hy,, =—-2® and g,, = (C2 + 2@) .

M
For a point particle or outside a spherical mass M: q)(r) =—G—.
r

Metric is ds? = (1—26—Mj dt? + (l+ZG—deF2. (Schwarzschild metric to first order.)
r r

Correction to Force of Gravity

2
Newton: F =ma = Gm—!“; General Relativity: F = GmM (1+ V—j.

r r c?
The correction is ~2 parts per billion!
The correction for the oblateness of the Earth is ~1 part in a thousand,|
a million times the GR correction.
However both corrections are important for GPS positioning.

Newtonian limit of cosmological constant
Work by Nowakowski shows that the cosmological constant in the Newtonian limit corresponds to

(I)(r):—GM—EAr2 or a force on mass m is F(r):—mdq)(r) mM ., m

r 6 dr r: 3

=-G +—Ar.

o


https://ned.ipac.caltech.edu/level5/March01/Carroll3/Carroll4.html
https://arxiv.org/pdf/gr-qc/0004037.pdf

A cosmological constant adds in a repulsive gravitational force, which could be the cause of an expanding universe. Of

course, the repulsive force has to be very small for r of solar-system size.


http://www.roperld.com/science/acceleratinguniverse.pdf

Spherical Body of Mass-energy M (Schwarzschild Metric)(no charge or spin)

_¢? (1—%) 0 0 0

-1
rS
gyv = O [ _?j O 0 y

0 0 r? 0
0 0 0 r?sin’@

where 1, =

= Schwarzschild radius. (I, =0 = flat spacetime.)

C2

“The Schwarzschild radius (sometimes historically referred to as the gravitational radius) is the radius of

a sphere such that, if all the mass of an object were to be compressed within that sphere, the escape velocity from
the surface of the sphere would equal the speed of light. If a stellar remnant were to collapse to or below this radius,
light could not escape and the object is no longer directly visible outside, thereby forming a black hole.”

A more compact way to write it is:

-1
r. I, .
ds® = —c? (1——Sj dt? +[1——Sj dr? +r?d@” +r’sin’ 6d¢°.
r r
“The Schwarzschild radius of the Earth is roughly 8.9 mm, while the Sun, which is 3.3x10° times as massive has a
Schwarzschild radius of approximately 3.0 km. Even at the surface of the Earth, the corrections to Newtonian gravity
are only one part in a billion. The ratio only becomes large close to black holes and other ultra-dense objects such as
neutron stars. The Schwarzschild metric is a solution of Einstein's field equations in empty space, meaning that it is valid

only outside the gravitating body. That is, for a spherical body of radius R the solution is valid for r > R. To describe the
gravitational field both inside and outside the gravitating body the Schwarzschild solution must be matched with some
suitable interior solution at r = R, such as the interior Schwarzschild metric.”

Interior Schwarzschild Metric

B 2
2 2

Slap-fo polh 0 0 0
4 I, r

0
0 0 0 r?sin®6|

where I, = ——

>— = Schwarzschild radius and I, = coordinate at the body’s surface measured at co.
c

Az
Assumed that it holds an incompressible fluid of constant density, p = M /(? rjj, with zero pressure at the surface.

It matches the Schwarzschild Metric at r=ry.


https://en.wikipedia.org/wiki/Schwarzschild_metric
https://en.wikipedia.org/wiki/Schwarzschild_radius
https://en.wikipedia.org/wiki/Escape_velocity
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Compact_star
https://en.wikipedia.org/wiki/Black_hole
https://en.wikipedia.org/wiki/Black_hole
https://en.wikipedia.org/wiki/Neutron_star
https://en.wikipedia.org/wiki/Einstein%27s_field_equation#Vacuum_field_equations
https://en.wikipedia.org/wiki/Interior_Schwarzschild_metric
https://en.wikipedia.org/wiki/Interior_Schwarzschild_metric

Schwarzschild Geodesic Equation (Equation of Motion)

The geodesic equation is 0—i g o’ —1 g dﬁﬁ Note that g, is time independent and diagonal, so
de\ " dr ) 2“7 dr dr B P gonal
0-g, 2% 154, (2 2
#ode?2 o 2 M7l de ) |
Time Component (u=1, x1 = t)
g L —g dt_ ¢ 1- 2GM ) dt =e|= constant
" de? Ydr r Jdr '
This e is the relativistic energy per unit mass as measured at oo:
2.1
Atr=o,|e= c2$=c P ;ﬂ=object's 4-velocity at oo,
dz m T
Clock atrest (dr=d@=d¢=0):
t
Proper-time interval = Az =Idr =J.«/—ds =I (1—2G—det2 —\/( 2GM )Idt = (1— 2GM jAt At
r
4

Gravitational red shift:

2 ﬂ/1 2GM /1, 2GM 2GM GM GM GM A,
Forr >ri—=Y——Lt ~|1- 1- = 1+ — I+ —-(r.—r)~—|
ﬂ"’s f]_ 2GM / I r r 2GM<r I r, arsg r, 1rs
¢ Component (u=4,x*=¢)
d dx” ) 1 dx® dx”
0=— — |—=0 e
dr[gw dz‘] 2 +9as dr dr
2
8w is tand ¢ independent and diagonal, so g, % =0= 94 g—¢ =r?sin? 6’% = ( = constant.
T T T

Vs .
Choose spherical coordinates such that the orbit is on the equator; i.e., 8 = E and sin@ =1.

Then relativistic angular momentum/unit-mass.



https://warwick.ac.uk/fac/sci/physics/current/teach/module_home/px436/notes/lecture15.pdf
http://pages.pomona.edu/~tmoore/grw/Resources/GRWBook.pdf

6 Component (u= 3, x3 =0)

Ozi g K _l g dﬁﬁzi(g d_g)_ia g (%jz+g (d_¢j2
de\ " dr ) 2 dr dr de\"%dc) 2 /| 7%\dr #\dr) |
2 2 2
or O:i(rzﬁj—lﬁe rz(%j +rzsin20(%j =i(r %)—Eag rzsinze(d—(/ﬁ) :
dr dr) 2 dr dr dr dr) 2 dr
2 2
or O:rzd—f+2rﬂd—9—rzsinecose(%j :
dr dr dr dr

T de
Note that @ = E and cos@ = 0 is a solution to this equation. So, d_ =0 means that the orbit is planar.
T

r Component (u= 2, x2 =r)

0— g d_zr_l
"dr? 2 dr

ez(l— )
_1=gtt (%j +grr (%j +g€6(%j +g¢¢[¥) =
i) o) () o) ool ) =
dr dr dr dr
e B i A I
T

r2|

2
dx“ ,
0,9,,| — | .- All metric components depend on'r.

2GM
r

at (=r?sin? ¢9d—¢
dr dr

Easy way: Use —1=u-u=g,u“u",

and 0= % (planar):

2GM
r

2GM
r

=_(1_

2GM
r

2GM
r

1

2 2 2
The solutions or |2 (e2-1)=2( 4L} _GM L _GMC|
2 2\dr r 2r r

E= %(e2 —1) = effective conserved energy per unit mass,

_ 1(drY . e .
Where |K = Slas) = effective radial kinetic energy per unit mass and

T
2 2
V=-— GLVI + 2€r2 - G'\r/lf = effective potential energy per unit mass

The last term in Vs not in Newtonian gravity.



“energy” Schwarzschild Case energy Newtonian Case

A - ._ GM , ¢ GMC( A . 2
N")f rtE T \,VN“)E—Gﬁ"*zQﬁ
l EN

| fr=i@) eei(3)

» r » r

N N
GM dominates -
2

GM GM dominates
r atlarger r atlarger

2r2 dominates at small r

GA{@“ dominates at small r
m

FIG. 10.1 These graphs show the effective potential-energy-per-unit-mass functions governing
radial motion in the Schwarzschild case (left) and Newtonian case (right).

dv(r) d[ GM (> GM#Z]| GM (* 3GM?
0= =—— + > 3 = 2 .3 4 '
) ) dr dr r 2 r r° r,

Circular Motion:

Letw, = L 36M w? — Pw+GM = 0. Solve quadratic for w, :

rC
i =Ir, = 6GM =1, 2 circular orbits, one stable (+) and one unstable (-). (Newtonian: T, :L ).
w, 1+1-12(GM / () VGM

Stable orbits: r >6GM; Neutron stars: r ~5GM; Black holes: r =0.

Radial Acceleration:

2 2 2
Doion %(ez—l) (drj —GM+ r _GM! =

dr dr r 2r® ri

GM (* 3GM/?
_7 T_T

; Newtonian has only the first two terms. Radial motion ({=0):a, =-GM /.
[

r

L
dz?

Radial Distance (dt =df=d¢=0):

As=[ds=|" /1—ZGM +2G|v|tanh-1/ 2GM As~F -1, +GMInl|
g \/1 2GM It = I,

4-velocity of Object at Rest

~1=u-u=g,uu' z—(l— 2GM )du2 =u :(1— 2GM ) . GE: M:—%.
r r




TABLE 14.1 This table summarizes the equations of motion for particles in the Schwarzschild equatorial plane.

Particles with mass m > O

Particles with mass m = O (e.g., photons)

ey | = (1= 2P1) . 0= G b= = (= soain d

e | awr=(1-2M) g (1-2M) 42— pagr | 0=(1-20M)ap— (1 - 2OM) 42— 2y
oany |~ =ty = (122 1+.5) l

A e e I
oapn | = = a1 -2) - =2

Photon Motion in Schwarzschild Space

For a photon: my=0 and ds’=0, so use m=0 equations in combinations that are well defined for m—0:

Define impact parameter = b=— =

Divide by (1—

2GM
r

Photon Radial Motion (in 6=7/2 plane): 0 = ds? = —(1— 2GM
r
2GM Jdt2 :
-1 2 -1 2
(8 2 ()
dt r dt r

1-[1-

( r?(dg/ d7)

(1-2GM /r)(dt/dr)

e

= rz(l

2GM
r

-1
4 _,

dg
dt '

. flat spacetime: r? —=
dt

)

using the d¢/dt equation above. Divide both sides by b*:

Yo
I

_ 2GM
r

-1
j dr? +r2dg’.

b2

jZ_

r2

dr

dr _2GM
dt

r

=)

2
-1 2
1 1 2GM \ " dr 1 2GM ) 1 1ldr 1
—=|=|1- — | +—|1- . Flat spacetime: —=|——| +—.
b b r dt r r b b dt r
A“energy” - 1 26M FIG. 12.2 This shows a graph of the
N o V() =-L(1-20M4) oy S
27(GM)? ; / r r effective potential energy function
2 ' for the radial equation of motion for a
1/b ] 1 26M Y (dr\P photon. Larger values on the “energy”
: <K= IE( 1-=5 ) ( dt )] axis correspond to smaller impact
26M ! parameters.
>




Schwarzschild Metric with Cosmological Constant A

- ) )
—¢? (1— 2GM —ﬂj 0 0 0
r 3
2
O, = 0 (1— 2GM —ﬂJ o 0 |
r 3
0 0 r2 0
i 0 0 0 r’sin*@

2
Then Relativistic Energy = |e = (—ﬂ —ﬂjﬂ .

2 2 2
E=K+V]or l(ez_l)ZE(EJ — gz_GMf _é(€2+r2).
2 2\ dr r2r r 6

— |\= GM (* GM?* A
Putting the cosmological constant, A, in Schwarzschild metric changes V : [V =— + op? -—— ——(62 + I’Z) .
r r r

Black Holes

A Black Hole is an object that does not have a surface outside of 2GM.

1. A clock at rest at r = 2GM registers no time (i.e., when r = 2GM and dr = 0,
dO =0, and d¢ =0, then dt* = (1 —2GM/r) df* = 0).
2. (Related to this,) light emitted from rest at r = 2GM is infinitely red-shifted when

observed at any (larger) radius. Moreover, the redshift formula simply does not
work for r < 2GM.

3. All particles (even photons) falling inward appear to a distant observer to “freeze”
at r = 2GM (see the expressions for dr/dt and d@/dt in table 14.1).

4. Worst of all, g,, goes to infinity at r = 2GM, implying that the derivative ds/dr of the
radial distance s with respect to radial coordinate r diverges.

Event Horizon

A spherical surface with the Schwarzschild radius, r=2GM, is also called the Event Horizon. Any object inside cannot
escape because the escape velocity would have to be greater than the speed of light.

Black Hole Density
Inside the Event Horizon the density is

mass M 3M 3M 3 3

P olume " 471773 4x1  4z(26M) |327G'M’ _8aGr |

The larger or more massive the black hole the smaller the density.


http://physicspages.com/pdf/Moore/Moore%20Problems%2023.03.pdf
http://physicspages.com/pdf/Moore/Moore%20Problems%2023.03.pdf
https://en.wikipedia.org/wiki/Schwarzschild_radius
https://en.wikipedia.org/wiki/Event_horizon

Surface Gravity

1 G
K=—=—-
4AM  2r,
Rotating-Black-Hole Surface Gravity
1 » : .
K= YTVl MQ?: =2zT, where Q, = angular velocity of event horizon,
a
where Q, = e

+

Black-Hole Thermodynamics

Units
G= 7.426><10’28m/kg; MO =1.9891x10% kg; GMO =1477m; 7 =1.0546 x1073J -5 k =1.3807 x102J) /K.l

: hc®
Event-horizon temperature: T =
87kGM
Entropy:
kA 2 IVE . Gh
S Al where |A=4rr =167G°M |, k = Boltzmann's constant & |, =, [—-|= Planck length.
c
P

ke® A arke’ _ 4zGM *ke’

So, |S =
4Gh Gh h

- Kerr: |S :ﬂ(r2+a2).

Hawking Radiation

. . . . ) 2GM ) dt
Inside the event horizon a particle with mass can have negative energy/ mass:[e =| 1— —.



https://en.wikipedia.org/wiki/Surface_gravity
https://en.wikipedia.org/wiki/Surface_gravity#Kerr_solution
https://en.wikipedia.org/wiki/Black-hole_thermodynamics
https://web.stanford.edu/~oas/SI/SRGR/lib/BlackHoleThermoShort.pdf
https://en.wikipedia.org/wiki/Hawking_radiation#cite_note-kumar2012-12

Cosmic refugees. Virtual particles that escape destruction near a black hole
(case 3) create detectable radiation but can’t carry information.

Vacuum fluctuations create particle-antiparticle pairs. If one occurs near the event horizon, the negative-energy particle

can pass through the event horizon and decrease the black-hole’s energy, the decrease radiating away by means of the
positive-energy particle. Since a photon is its own antiparticle and has zero mass, it is most likely that the particle-
antiparticle pair is two photons. So the black-hole black-body radiation is photons.

Emitted Thermal Black-Body Radiation

T= f = i ;Kerr:T=i Zr*z—i.
87GMk  4rxrk 2r\r/+a° 2r,
M . -
f h o (BLTI0TK |\ _m_ T 600K,

“87kGM  87kGM_ M | M /M,




Black-Hole Lifetime
Stefan-Boltzmann Law for energy radiation from a black-body:

|dE /dt = AcT* | where o = Stefan-Boltzmann constant.

So, the mass-loss equation of a black hole is

4 4
d_E:_d_M:AO'T4:47zr520'( f j :47[(ZGI\/I)20( ’ j =
dt dt 87kGM 87kGM

4 4
=47r(2G)20( h j M‘2=—0?4 M2
87kG 2567°k"G
3,402 3,402 )

SO,—MJ‘O M*dM =MM3 = IIfedt:z'nfe-

oh M 3oh 0

3,4 3y, 4
So, the lifetime of a black hole is |z, =M( M)3=MQB-
3Goh 3Goh

3
7y, = (1.095x10 yr)(MﬂJ

)

Universe age = 13.82 x 10° years:

=(1.0807x107*°M,, )(1.98855x10*°kg/M,, ) =

=3.0km,r. =

Minimum black-hole radius: ¥ giacktole

(3.0 km)(1.0807x10™*) =

M = Mog/(ls.sleog)/((1.095x1067 }) =1.0807 10 M,

2.149x10%kg =M

3.2421x10°km = r;,

Reissner-Nordstrom Metric for a Charged (Q), Non-Spinning Spherical Body of Mass M

(pn, 5
-2+ 2 0 0 0
ror
-1 2
= AL where |12 =2
v 0 {1—?+r—2J 0 0 T et
0 0 r? 0
0 0 0 r’sin’4|

This reduces to the Schwarzschild metric when Q =0.



https://en.wikipedia.org/wiki/Reissner%E2%80%93Nordstr%C3%B6m_metric

Kerr Metric for a Spinning Black Hole

with a Spherical Event Horizon

. -
e (1_@_2) o o _2rsrac§|n 0
p p
Py
0 — 0 0
g/tV = A ]
0 0 p 0
A2 2
_aracsin’é (_9]9
L P P ]
where | p® =r? +a’cos’ 6|, [A=r’—rr+a’|, r§=ZGZNI : azMi and J = spin.
c c

This reduces to the Schwarzschild metric when J =0.

In fact, astrophysical objects that might collapse to black holes will almost inevita-
bly have nonzero angular momenta, indeed enough so that black holes formed by

almost any conceivable process will have a
64-65).

Physicists also strongly believed that a black

= GM (Bardeen, Nature, 226, 1970,

hole will not form with a = GM: the

high angular momentum of the collapsing object will lead it to spin off some ma-
terial. This means that astrophysical black holes formed by collapse will almost

certainly be Kerr black holes with a = GM.

Weak-Field Limit of the Kerr Metric

In Schwarzschild metric throw away terms in a?/r® and use first term in binomial expansion of g,.:

2GM
r

=

0

0
_4GMacsin2 6

Particle Orbits in Kerr Spacetime

d

dr

dx”
dz

0

r
Geodesic equations of motion: (gw J—

-2 .
0 0 _4GMacsm 0
r
(1+2G—Mj 0 0
r
0 r? 0
0 0 r?sin?@
1, oo
2“2 dr dr |



https://en.wikipedia.org/wiki/Kerr_metric

: d dt d¢ _ dt d¢
|fﬂ=t-0:d—(9n = + 0y drj+0:> e:—(gnd—r+gt¢d—rj1

d dt
If,u:¢:0—d (gmd

Asr—o:g, >-10,<g, andg, —r’sin’4:

d dt d
+g¢¢d¢j+0:€ g¢jtd +g¢¢d¢.

dt L .
e= ol relativistic energy per unit mass and
T

0

. d .
(= (rz sin’ gd_(ﬁj = angular-momentum z-component per unit mass.
T

o0



e+g,,/ e+g,,/ e+g,0 e+g,0
Solving:ﬂ: Iwe+ 0yt _ 0yf*0yf|1dg _ 0uf+0uf _ 8u€+0, ,where |R> =r® +a’ — 2GMr|.

dr (g, -g,0, RS0 [|dr (g )-g, RSiN‘O

Black Hole Regions

Spacetime
Distortion

-
R -



Schwarzschild
black hole anatomy

event horizon

ichy horizon)

Singularity

Schwarzschjld
radius

Lastly, this is more or less what an actual black hole with an accretion disc would

look like!!:

Image credit: James et al., licensed under CC BY-NC-ND 3.0

What you see here is the Doppler effect in action, where the light of the infalling
material is being blueshifted where it spirals towards the observer, and
redshifted where it spirals away from the observer. Furthermore, the part of the
accretion disc behind the black hole is being warped above and below the black
hole due to gravitational lensing .-, so we can effectively see material from

behind the black hole.



Consider only orbits in the equatorial plane:

o (1_ 2GM j o o  _2GMac
r r
2
0 o 0
90 = R ,
0 0 r? 0
2
_ 2GMac 0 0 rlidls 2GMa
i r ro

2 2 2
For a particle of non-zero rest mass: U-U=-1=(¢, [%j +0, (%j +0, (%) +29,, %%

. 2 (*+a’(1-¢’) GM ((—ea)’
Ezl(e2—1)=1(£] &M, (2 )_ ( g ) = K+V,, (1)}
Then 2 2\dr r 2r r
a "conservation-of-energy-like" equation.
2 2 2
Fora=0:E :l(ij _EM ¢ > —GMf , the Schwarzschild value.
2\dr r2r r

d’r __GM _C+a'(1-¢’) GM(-ea)

“Force-likes” equation:
dz? r 2r® r

Al d¢  9,8+0.( 2GMae+(1-2GM )¢
SO, [— =— = _

dr R? r(rz—ZGMrJraz)

Solve the last two equations numerically, given .

dg _ 2GMae _ 2GMae
dt  rR’ r(r’—2GMr+a*)

For (=0: > >0 forr >2GM, a gravitomagnetic deflection.



particle
trajectory

field
source

FIG. 37.1 Deflection of a particle fall-
ing inward with ¢ = 0. Note that the
particle is swept in the direction of the

source’s rotation.

Kepler’s Third Law for Circular Orbits
dt

2
Geodesic equation: 0= (d_j (argn +20,9,,Q+ GrgMQz) where Q =
T

2
= ’4Lr3’2 +27a — Kepler's Third Law. (£
GM a—0

2z
O

Innermost stable orbit: |r> —6GMr —3a? +8a+/GMr =0

“Dragging of inertial frames.” Outward particle dragged opposite rotation.

%; solution: Q = /GM

dr JGMa=+r¥?

in orbit with/against source rotation).

= for a =0 the Schwarzschild value.

For extreme value a=GM :r =GM for co-rotating and r =9GM for counter-rotating orbit.

Kerr-Newman Metric for a Charged (Q), Spinning (]J) Spherical Body of Mass M

2

¢ (azsinze—A) 0

2

D
2
0 P
gpv = A
0 0
2—azcsinzﬁ(A—rz—az) 0
P

0 2—azcsinze(A—rz—az)
e,
0 0
P’ 0
a2
0 [(r2+a2)2—azAsin20} sze
P

where p° =r*+a’cos’ 6,

A=sri-rr+a’+rj| .

_ %M 3 and J = spin.
Mc

s Cz’_

This reduces to the Schwarzschild metric when

J =0 and Q =0 and the Kerr metric when Q = 0 and the Reissner-Nordstrom metric when J =0.


https://en.wikipedia.org/wiki/Kerr%E2%80%93Newman_metric

Infinite-Redshift Surface/Event Horizon

Schwarzschild: At r =2GM : g, =0: clocks at rest there measure zero proper time relative to clocks at infinity.

There is infinite redshift. Event Horizon: An ingoing particle cannot escape.

Kerr metric for spinning source: Infinite-redshift surface encloses the event horizon, the ergoregion.

Proper time: d7 = ﬂ/—gn dt between events separated by coordinate time dt.

Kerr black hole has two infinite-redshift surfaces:

r=GM J_r\/(GM )2 —a’cos? @

At poles: r =GM + (GM )2 —a’ and at equator: I =2GM.

forla=—<GM|.

The event horizon is between those two surfaces, so only the outer one has meaning.

Consider a circular equatorial orbit: angular velocities: [C2

2GMa

r’+a’—2GMr

TP ra’r+2GMa’ (r2+z;12+ZGMazlr)2 .

Event Horizon: 0 = (gw )2 =049, = (rz +a’ —ZGMI‘)Sin2 6 =R’sin® 6.

On equator: 0 =r?+a’—-2GMr =

2G
The metric on the event-horizon surface: |ds® = p*d6? +[

ds? = p?d@? +[ZGM

GM =+ (GM )2 —a’|, Only the + one has meaning.

2
M J sin® d¢? | where p* = r? +a”cos® 6.

Its surface areais |A=87GMr|.

infinite-redshift surface

event horizon

ergoregion

FIG.38.1 A polar (&) plot of the
infinite-redshift and event horizon
surfaces for an extreme Kerr black
hole (a = GM). The r-coordinate of the
event horizon is r, = GM: the equato-
rial r-coordinate of the infinite-redshift

surface 15 r, = 2GM.

The event horizon is a sphere only if a=0.

2
J sin® 6d ¢ —%rzde2 +(2GM )2 sin® @d¢*, a sphere of radius 2GM.



Photon sphere: A photon sphere is a spherical region of space where gravity is strong enough that photons are forced to
travel in orbits. The radius of the photon sphere, which is also the lower bound for any stable orbit, is for a

Schwarzschild black hole dr =0, ds =0 & d6 =0: Schwarzschild metricis —(1-r, /r)dt* +r?sin’ od¢ = 0.

' d_¢=,/1—rs/r

. The radial geodesic equation is

| dt rsing

d’r . : dg r

— 4T u“u" =0orIT" u“u” =0. EvaluatingI"*  vields |— =,[————|.
dz2 * o 90w Y dt 2résin @

For 0=7/2:|r, =3r,/2=3GM | for J =0.

For J > 0:A Kerr (spinning) black hole does not have spherical symmetry, but only an axis of symmetry, which has

profound consequences for the photon orbits. A circular orbit can only exist in the equatorial plane, and there are two of
them (prograde and retrograde), with different radii,

2 (xd ) 2 (0 3
r, =r,|1+cos 30087\ ;1+cos 30087 ] )= 5

2
where r, =GM +J(GM ) —(ﬁj —2GM =r,.

J is the angular momentum. There exist other constant-radius orbits, but they have more complicated paths
which oscillate in latitude about the equator.

Cosmic Censorship. Note that solutions to equation 38.7 for the event horizon radii
fail to exist if a > GM, meaning that there are no event horizons in such a case. Now
Kerr spacetime has a true geometric singularity (a place where the curvature of space-
time becomes infinite, analogous to r = 0 in Schwarzschild spacetime) where r = 0. If
a > GM, there would be no event horizons surrounding this singularity, meaning that
observers could visit this physical absurdity and send information back. This would
raise a host of deep theoretical problems having to do with such issues as causality and
self-consistency of the theory.

The Cosmic Censorship Hypothesis (first proposed by Roger Penrose in 1969)
asserts that the gravitational collapse of a physically reasonable mass distribution can
never produce such a “naked” singularity “unclothed™ by an event horizon. As of this
writing, this hypothesis remains unproven, but there is evidence to suggest that a Kerr
spacetime with a > GM would be unstable, meaning that it would spontaneously radiate
gravitational waves until a < GM. Moreover, there are published arguments that sug-
gest that any collapsing physical object with @ > GM would fragment into pieces before
forming a black hole. We will therefore assume that the Cosmic Censorship Hypothesis
is true and that all astrophysical black holes have a < GM and thus have their singulari-
ties discreetly clothed by event horizons.


https://en.wikipedia.org/wiki/Photon_sphere
https://en.wikipedia.org/wiki/Kerr_black_hole

Cosmology

Observable Universe

Size: 12 Gly, ~10M galaxies; Galaxies: Average size: ~50,000 ly, ~10" stars; Milky Way: Size: 100,000 ly, ~3 x 10" stars.
Solar System: Size: ~28,000 ly from Milky-Way center and 20 ly above MW central plane.

Distance to stars is determined by parallax, Cepheid variables and Type 1a supernovae.

Supernovae occur in a galaxy about every 300 years.

Galaxies are receding by Hubble’s Law: v = Hod, where d = distance. Ho =70.4+1.5 (km/s)/Mpc = [13.9+0.3 Gy] " in GRU.
Big Bang =ty = Ho'=13.9 Gy ago.

Sky black-body temperature = 2.725+0.001 K.

Opaque universe to ~380,000 years after Big Bang.

Universe is isotropic > 1 part in 100,000 and homogenous.

Composition of Universe

e Ordinary matter (protons, neutrons, electrons, etc.):  4.56+0.16%; density = 4 x 10*® kg/m3

e Radiation (photons and neutrinos) ~0.0084%
® Non-baryonic dark matter 22.7+1.4% (cold WIMPs?)
e Dark Energy 72.8+1.6% (cosmological constant vacuum energy)

v, (km/s)

(\u\\||||||||1||

0 5 10 15
radius (kpc)

Metric for the Universe

ds? = —dt?® + a? (t)[df2 +q? (F)(d 62 +sin? 0d ¢ )] a(t)specifies universe scale.

. (T
Rsin (—j
Three metrics: R

where g (F) = r and T is comoving with the expanding universe.

Rsinh(zj
R




Universe History

kgT (eV)
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2 (see next chapter)
- 10
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i In Equilibrium:
- Quarks, leptons,
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“He mass fraction

Number relative to H

la(D)? - [a(t))?= 2/ Q,Hy(t—t) (when radiation dominates)
[a())** = [a(t))** = 3/ Q, Hy(t— t,) (when matter dominates)

a(t) = a(t,)e" "™ (when vacuum energy dominates and 2, = 0)

where 1, is the time when the component in question starts to dominate.

_ 3H;
P =376

(26.17)

and compare the present energy densities of matter, radiation, and the vacuum to this
critical density by defining the unitless ratios

_ Pmo

Q2,= D,

Q

Fraction £2, of the critical density

0.01 0.02 0.03 0.05

0.25f
0.24
0.23
0.22}

1

Y

104}

10
10

ik
T Av T

100}

‘]—I/E/
D

1 1 [ ] 1 1

1 2 3 456
Baryon density (1028 kg/m?)

r:p9
c

Fas .QVE&

Pe

(26.18)

FIG. 28.2 This diagram shows the theo-
retical abundances of various nuclei

as a function of the current density of
baryonic matter. The vertical side of
the box associated with each curve
corresponds to the uncertainty in the
measured value of that nucleus’s abun-
dance: the horizontal side thus corre-
sponds to the range of baryon densities
consistent with that abundance. The
vertical gray bar specifies the range

of baryon densities consistent with all
measured abundances. This figure is
adapted from Charbonnel, Nature, 415,
2002, 27-29.



Cosmic Microwave Background (CMB) Fluctuations and Inflation

FIG. 29.1 This is a map of the CMB (corrected for the earth’s motion and
contributions from the galaxy). The fluctuations represent temperature changes
on the order of tens of 4K. Credit: NASA and the Wilkinson Microwave
Anisotropy Probe (WMAP) team.

Isotropic to a few parts in 10° and universe is very nearly flat.

Inflation
The isotropy and flatness are explained by early universe rapid exponential expansion (inflation):

Vacuum dominated: a(t) = a(ts)exp(‘ ,gnG p(t—t, )J where t, is the time when inflation started.

Grand Unified Theories (GUTs):

e Thermal energy = kT > ~10" GEV ~ 10° J: strong, weak & EM interactions are one.
e ~10" GEV > kT >~100 GeV: strong separate from electroweak interaction, a phase change.
e ~100 GeV > kT: weak and EM interactions separate, a phase change.



Friedmann--Lemaitre-Robertson-Walker Metric

“Consider a homogeneous, isotropic expanding or contracting universe that is path connected, but not necessarily

simply connected.”

K

“This model is sometimes called the Standard Model of modern cosmology.”

De Sitter Metric

“de Sitter space is the maximally symmetric vacuum solution of Einstein's field equations with a positive cosmological
constant (corresponding to a positive vacuum energy density and negative pressure). When n = 4 (3 space dimensions
plus time), it is a cosmological model for the physical universe; see de Sitter universe.”

—c* 0 0 0
1
0 t)? 0 0
a(t) 1—kr?
0 a(t)2 r? 0
0 0 0 a(t)2 rzsinza_

= constant representing the curvature of space.

However, see Lambda-CDM model.

4

2 r?
- |1-— 0 0 0
a

)
9 = 0 (1——2j 0 0
(24
0 0 r’ 0
i 0 0 0 r?sin@
r=a is a cosmological horizon.
Electromagnetism
In cgs units:
Four-Potential
‘(47| T
A =(¢,A); E=-V$-=0,A,|B=VxA
C
Vector notation
V-E =4np| wﬁ-%ﬁ:“—”*, V-B=0| VXEJatE:o
c C C
Lorentz Gauge
0,A* =0, j“=(Cp, Jyo Jyo jz).Define: uzc—lzaf—vz oA” :4%]“



https://en.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metric
https://en.wikipedia.org/wiki/Lambda-CDM_model
https://en.wikipedia.org/wiki/De_Sitter_space
https://en.wikipedia.org/wiki/Vacuum_solution
https://en.wikipedia.org/wiki/Einstein%27s_field_equations
https://en.wikipedia.org/wiki/Cosmological_constant
https://en.wikipedia.org/wiki/Cosmological_constant
https://en.wikipedia.org/wiki/De_Sitter_universe
https://en.wikipedia.org/wiki/Electromagnetic_four-potential

Tensor notation

X

0 -El/c -E//c -E,/c

B _ i AY _ Y A E /c 0 -B, B,
7T g /e B, 0 -B,
E,/lc -B, B, 0

0,F" =2 |2 (0, i, i1, ). [ T v 0 F P <o)
C C

Stress-Energy Tensor

Newtonian Gravity
g=-VO, -V-g :—V-(—WD):VZCD = 47Gp, spherical mass M : G =(GM /r?)F.

The Riemann tensor in GR plays a similar role as 8j6k(D does in NG.

Fluid: | p = pu“u” =T* =T =stress-energy tensor; T = i-flux of j-momentum|.

Conservation of fluid’s energy = 6”Ttv =0|.

p 0 0 0

0 O

Perfect fluid (ideal gas) at rest in a LIF: T*" = Po o 0
0

0 0 p

Arbitrary coordinates: T*" = (p, + P, )u“u” + p,g*".
Conservation Law (VVT = 0):

2, (pou”)+ Ped,u” (eq. continuity); (o, + po)(ayu”)u” :—(77/” +u”uv)6# p, (eq. motion).
Non-relativistic limit: u” = [1, VX,vy,vZ] &pxp.

Continuity: 0, (pu“)=0:>%o+§-(p\7); motion: p(&yut)u” +n"0,p :O:p(%ﬂ]VjU:—Vp.

GR units: [energy density] = kg-m*/m?*/m® — kg/m?; pressure = kg-m/ m*>/m*> — kg/ m>.
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The sections of the above table in blue and green were not original to Einstein. It is from the Cauchy-stress
tensor in continuum mechanics(fluid mechanics). What Einstein did was treat the time component(given
as 0 superscript) as equivalent to the x, y and z components(given as 1, 2, and 3 superscripts) setting the
stage for the above modified tensor. We will go through and analyze which have been tested and verified
as contributing to gravitational fields and which have not.

Energy Density - This actually includes two types of particles:
Massive and Massless

Massive particles - have been thoroughly tested as they are the most prevalent form of energy where we
are located. In fact, so much so that there would be no reason to cite any examples as nearly every
test of General Relativity has related to massive particles.

Massless particles - such as gamma rays, photons, light, etc. have not been tested. That is because
their theorized contribution is usually quite insignificant.

The other dimensions of the above matrix are also difficult to test and detect:

Pressure, Shear Stress, and Momentum Density have not been tested, yet, as far as I know. There
have been proposed tests, however: https://www.researchgate.net/pub...

Now, one could just as easily modify the source of gravity to be from energy which follows a geodesic only,
such as mass, stress, and pressure(as opposed to a null geodesic, such as light). This would produce
indistinguishable results because the energy contribution of non-mass 700T00 of the tensor is
considerably negligible(c—2c—-2). So there are some fine points which have not been conclusively settled by
experiment and may open up new and interesting physics.

Or it may turn out massless particles and other non-massive forms of energy contribute, as well. Only time
and better experiments will tell. Thank you for reading!


https://www.researchgate.net/publication/263886244_The_gravity_of_quantum_pressure_-_A_new_test_of_general_relativity
https://en.wikipedia.org/wiki/Stress%E2%80%93energy_tensor

Electromagnetic Stress-Energy Tensor
i S
;(80E2+182] S S 8

2 Hy C C C
S
X
T ? O _O-xy Oy,
S5 -0, -0, -O
C yX yy yz
S z
? —O0yx Oy —0,

where S=—1 £ xB = Poynting vector and o, = &,EE, L B.B, —E(<90E2+i sz@j.
Hy Hy 2 Hy


https://en.wikipedia.org/wiki/Electromagnetic_stress%E2%80%93energy_tensor

Gravitational Waves

Graviational waves far from their source will be very small perturbations of flat spacetime:

Riemann tensor:

9, =7, +h,, whereh,, =h, and |,

<1.

v _ v W wo_ e v
g“ =n"" —h"" where " =n““n"h_,.

1

R =§(aﬁa h,, +0,0,h,,—0,0,h, —0,0,h,,) to lstorderinh,,.

afjuv uoav

aYv sy T YaY u iy v

G” =R” —%g”R =87GT" =
Einstein eq.: 1
E(aya#hﬂf’ +870,h —0"8°h—8"0 W7 — "0 ,0 " +3’70“6 ) where| h=p"h, |

, 1 . . , 1 1 _ 1

Define: |H, =h, ——n,h} define|H=""H |=5"|h, -=n,h|=1--4h=-h;-h =H --
2 2 2 2
Einstein eq.:
2

o’ H” —070,H* —0°0 H" +177°0,,0 H* = —162GT " | where| o’="0,0,=0"0, = —%+V2 .

Apply a gauge transformation such that

d,H*" =0= Lorentz gauge

Try a plane-wave solution:

; then Einstein eq.:

o’H* =-162GT* &0 ,H" =0|

H (t,2,y,2) = A“ cos (kX" ) = A*" cos(lf-r”—a;t) where A“ =constant & k,, = (-ak, k,k, )

Wave speed =v =/ k.

Requirements:

Einstein eq.:k“k, =0=k k7 = (@) 7" + k2™ + kin” +kn” =-o* +k> > 0=k & [v=w/k=1|
Lorentz gauge: k, A" =0 & Symmetry: A" = A™.

For a transverse-traceless (TT) gauge (comoving) transformation: A = A* & Ay =0.

Propagating in the z direction: k, = (-,0,0, ®).
Only AY=A"=A_ & A®=—- A" = A, are nonzero.

00 0
01 0
A" = A,
00 -1
00 0

0 0 0O
0 0 01
0+A‘010
0 0 0O

0

o O O

: 2 polarizations + (upright) & x (diagonal).

nﬂVH.



A
|wt=n

Upright (plus)
polarization:

W=

Diagonal (cross)
polarization:

Physical separation of one of the particles from the circle center is:

Upright wave (+): As = R(1+ A, cos wt cos 20)
Diagonal wave (x): As = R(1+ A, cos otsin 20)

WARNING:
GRAVITATIONAL
RADIATION

-
D‘H

Typical astrophysical sources produce GW with amplitude ~10° measured at the Earth. Free particles separated by 1000
km will oscillate with amplitude of ~10™ m, about the size of a large atomic nucleus. Although a 1-kHz wave has an
intensity of ~30 watts/m?, the interaction is weak. If the Sun were swallowed by a solar-mass black hole the GW
amplitude would be ~10®, not noticeable by your body.

Gravitational-Wave Energy
The stress-energy tensor T*" describe the density of matter and energy excluding energy of the gravitational field,

which is embedded in the Einstein tensor G*.



Gravitomagnetism in Weak-Field Limit

d,, =1, +h, whereh =h & ‘hﬂv‘ <1, Lorentz gauge: 0 =7, (a#hw —éavha#j.

Einstein Eq.: 0“,h* = (8, + V)" =-167G (T’” —%U”VT)-

l[T”V(t—s,F)—%n”VT(t—s,F)}dv where |s, ‘ﬁ—ﬁ‘.

The solution is h*¥ (t, ﬁ) =4G
Src S

(po =0,u' =1 u’ zVi);TW :(po+ po)uﬂuv + P9 =>T" z,Oo’Tti z,Oovi,Tij ~ 0.

Assume slow-source P | a1 A 1 .
T=—p, T == T==p,, T" == T = pV, T"==0"T = =" p,.
Po 277 2,00 277 Po 277 277 Po
Then h'(t,R)=h" =h” =h* =2 160, (t—s,F)adV &h (t.R)=h"=4 1631 (t—s,F)av where [ =
src S src S
1 G i 1 1 '
Define gravitational scalar & vector potentials: |Dg =3 ht=—[ 2Pogv|& A; =3 h' =3 h' =— ﬂdV :
src S src S
Gravitational Maxwell Equations: |V - As :—GC;G : EG _VCD - aAs ,|Bg =V x 'Eb .
Gravitoelectric & gravitomagnetic fields:
= - OE, =3 . - OB
V-E =—47Gp,|, |V x By —%:—4756\] |V-Bg =0|, VxEG+%=O.

The minus signs in the first two equations are because the gravitational force is always attractive.

The geodesic equation for low speeds is
d’x' 1
a> 2

7o +n* (8,0 —a;h V! =|F =m=2 =m(E, +4/ xB, )|

The gravitomagnetic force is 4 times the electromagnetic force and the sign of |§G is reversed = a left-hand rule.



Gravitomagnetic Effects on a Gyroscope. We know from electromagnetic theory
that a simple current loop of area A carrying current § has a magnetic moment £ with
magnitude 4 = iA pointing perpendicular to the loop’s plane in the sense indicated by
your right thumb when your right fingers curl in the direction of the current flow. In
anngnctl:]icldﬂ such a current loop experiences a torque T = pxﬂ'ttulsnd:sm
align the loop’s magnetic moment with the field.

Ymmabm{mbm}ﬂ}:lﬂla:pnnmguhpd[agymwnpellﬂsmmhgmm
mmmﬂg_ $5. whtslslh:gyrmcqnsmulspnmgnlﬂlm-
mentum. By analogy, in a gravitomagnetic ficld B;, such a gyroscope should experi-
ence a torgue

T = ji; x4k, = 3 x 28, (35.13)

(remember that a gravitomagnetic field exerts 4 times more force on a moving mass

than the corresponding magnetic field would exert on a moving charge). As discussed
in box 35.5, exerting such a torque on a gyroscope causes it o precess around the field

direction with an angular velocity of

0,y =—28; (35.14)
if we define ﬁulﬂpnim:symnﬁ;htlhlmh[hcﬁﬂmmﬁngeﬂmﬂiuthdim-
tion of the precession. Observing this so-called Lense-Thirring precession of a gyro-
scope al a point in emply space provides a practical way to measure both the magnitude
and direction of any gravitomagnetic field present at that location.
Lense-Thirring Precession Near a Spinning Object. Another established result
from electromagnetic theory is that any stcadily spinning charged object with spherical
symmetry produces a dipole magnetic field in its exterior:

2 = _ Ha - oo -
B(F) “r,[a{n AF— | (35.15)

where i is the object’s total magnetic moment, 4, = 44k (in GR units), r is the dis-
placement from the object’s center to the point where the field is being evaluated, and
F is a unit vector pointing in the r direction (see the “Dipole”™ entry in Wikipedia). By
analogy, then, the gravitomagnetic field produced by a spherical star or planet with total
spin angular momentum § is

Bo) == G[30c- 1 fic] = 15— 3G- 7] (35.16)

where the factor of 2 comes from fi: = 5 (as discussed above) and the minus sign
comes from the reversal of the gravitomagnetic field compared to the analogous mag-
netic field). We can use this to estimate both the magnitude and direction of the Lense-
Thirring effect near a rotating body of interest.

For example. consider a gyroscope in an equatorial orbit around the earth. Since
the carth’s spin angular momentum § points perpendicular to the carth’s equatorial
plane from south to north (check with vour right hand), for a point on the earth’s equato-
rial plane, § 7 = 0, 50 on that plane, B; = GS/2r" oriented parallel to the carth’s spin
§ . The orbiting gyroscope's precession relative to distant stars will be casiest to observe
if its spin § is perpendicular to this direction (i.¢, it lies in the equatorial plane): let's
assume this. The angular speed of precession will then be

0 = 28,= 5 = G2 @5.17)

r

where [ is the earth’s moment of inertia and @ is its spin angular speed = 2Zx/day.



To go further, we need to estimate the earth’s moment of inertia. We can quite gen-
erally express an axially symmetric object’s moment of inertia as

I = aMR? (35.18)

where M is the object’s mass, R is its radius, and @ is a constant (0 < & < 1) that depends
on the distribution of mass in the object: & larger if the mass is concentrated near the
object’s rim and smaller if it is concentrated in the center. For a uniform sphere, o = 2/5,
but since the earth is denser near its center, we would expect & for the earth to be some-
what smaller: detailed estimates based on the earth’s measured density profile imply
that & = 0.33. Therefore, a good estimate of the Lense-Thirring precession rate for our
orbiting gyroscope would be
3

GM ( R) @

aMR?
.QLT= o r’z 10

(35.19)

where R is the earth’s radius = 6380 km. Note that GM for the earth is 4.45 mm. There-
fore, for a gyroscope in low-earth orbit where r = R, we have

0.33(4.5 X 107 ph) { 277 rad )( 365 day) _ 5.4x107 rad

6,380,000 |\ day s (35.20)

This corresponds to about (.11 arcseconds per year, which is obviously a very small
number (and therefore is very difficult to measure).

Qir =

Geodetic Precession. There is a second effect that will also cause our hypothetical
orbiting gyroscope to precess. Because of the curvature of spacetime, a gyroscope or-
biting even a non-spinning object will precess: this phenomenon is called geodetic pre-
cession. Since this is not a gravitomagnetic effect, I will not discuss it here, but problem
P35.7 will guide you through the derivation if you are interested. Again assuming that
the gyroscope orbits in the equatorial plane and has its spin lying in that plane, the angle
through which the gyroscope precesses is

Ao = M. per orbit (35.21)

Since a near-earth orbit takes about 85 minutes, the precession rate is

0 = APu_  37(4.45%10° 1) (1m>(3.16x10’,¢)
# = T 7 (85 min) (6,380,000 ;)\ 60 ¢ ly

= 4.1 x 10-5 radly (35.22)

This is almost two orders of magnitude larger than the Lense-Thirring effect for a gyro-
scope in low earth orbit.



Carter Constant

2

14
C= pg +cos? G(az (1—62)+ — 0} = Carter Constant, which is a function of three conserved quantities
Sin

fZ
sin® @

Some authors use the symbol Q instead of Cfor the Carter Constant.

P,, € and (,. For the Schwarzschild metric (a = O) C=p,+ . For equatorial motion: (9 = 7[/2) C=/03

Define |L = /(> +Q|= total angular momentum for the Schwarzschild metric (a = 0). Thatis, for a=0:Q = (% + fzy.

Black Hole Relativistic Jets

Inner Structure of an Active Galaxy

I-_—| Shock
0.1 lightyears

Ty

Relativistic Jet

Supermassive
Black Hole

Accretion Disk

Opaque Torus
(Inner Regions)

“They likely arise from dynamic interactions within accretion disks, whose active processes are commonly
connected with compact central objects such as black holes, neutron stars or pulsars. One explanation is that
tangled magnetic fields? are organized to aim two diametrically opposing beams away from the central source by
angles only several degrees wide. (c.>1%.).B! Jets may also be influenced by a general relativity effect known

as frame-dragqing.”

“Because of the enormous amount of energy needed to launch a relativistic jet, some jets are possibly powered by
spinning black holes. However, the frequency of high-energy astrophysical sources with jets suggest combination of
different mechanisms indirectly identified with the energy within the associated accretion disk and X-ray emissions
from the generating source. Two early theories have been used to explain how energy can be transferred from a
black hole into an astrophysical jet:

e Blandford—Znajek process.™ This theory explains the extraction of energy from magnetic fields around an
accretion disk, which are dragged and twisted by the spin of the black hole. Relativistic material is then feasibly
launched by the tightening of the field lines.

e Penrose mechanism.2 Here energy is extracted from a rotating black hole by frame dragging, which was later
theoretically proven to be able to extract relativistic particle energy and momentum, and subsequently shown to
be a possible mechanism for jet formation.”



https://en.wikipedia.org/wiki/Carter_constant
https://en.wikipedia.org/wiki/Astrophysical_jet
https://en.wikipedia.org/wiki/Accretion_disk
https://en.wikipedia.org/wiki/Black_hole
https://en.wikipedia.org/wiki/Neutron_star
https://en.wikipedia.org/wiki/Pulsar
https://en.wikipedia.org/wiki/Astrophysical_jet#cite_note-Morabito-2
https://en.wikipedia.org/wiki/Astrophysical_jet#cite_note-Kundt-3
https://en.wikipedia.org/wiki/Frame-dragging
https://en.wikipedia.org/wiki/Blandford%E2%80%93Znajek_process
https://en.wikipedia.org/wiki/Astrophysical_jet#cite_note-13
https://en.wikipedia.org/wiki/Penrose_process
https://en.wikipedia.org/wiki/Astrophysical_jet#cite_note-14
https://en.wikipedia.org/wiki/Frame_dragging

“Jets may also be observed from spinning neutron stars. An example is pulsar IGR J11014-6103, which has the
largest jet so far observed in the Milky Way Galaxy whose velocity is estimated at 80% the speed of light. (0.8c.) X-
ray observations have been obtained but there is no detected radio signature or accretion disk. Initially, this pulsar
was presumed to be rapidly spinning but later measurements indicate the spin rate is only 15.9 Hz.292%1 Sych a slow
spin rate and lack of accretion material suggest the jet is neither rotation nor accretion powered, though it appears
aligned with the pulsar rotation axis and perpendicular to the pulsar's true motion.”
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Appendix: SI & GR Units
e ¢=299,792,458 m/s
e 1m=1/299,792,458 s = 3.3564095 x 10° s =3.34 ns
o 1us=299.8m (oftime); 1 ms=299,800 km; 1 s =299.800 km; 1 min = 17.99 x 10"6 km
e 1hr=1.079x 1079 km; 1 day =25.90 x 1079 km; 1 yr =9.461 xao*15m
e universe age =13.7 Gyr =1.30x 10726 m
We can convert any quantity in SI units into GR units by multiplying by as many
factors of the conversion factor ¢ = 1 =(2.99792458 x 10* m / 1 s) as are required
to eliminate all units of seconds from the quantity.

2 2
1J =1 kg%(zgg 7912;458:;11) = 1.1126501 % 10-!" kg (energy) (2.9a)
1 kg (energy) = 8.98755179 x 10'¢ ] (2.9b)
1 kg (momentum) = 299,792,458 kg-m/s (2.9¢)
1eV=1602x10"°J = 1.782 x 10-% kg (energy) (2.9d)
1 eV (momentum) = 5.34 x 1028 kg-m/s (2.9¢)

The eV as a unit for mass, momentum, and energy has a much more convenient size
than the kilogram when dealing with subatomic particles, atoms, and molecules.
Here are some constants in GR units that will be useful to us later:

g=109%x10"m?'=1/(9.17x10%m) = 1/(1 ly) (2.10a)
G =7426 x 102 m/kg = 1477 m/ (solar mass) (2.10h)

Planck mass: |[m

B

=(2.176470+51)x10"° kg=1.220910x10° GeV/c’

o

Planck length: [ = (1.616229i38)x10‘35m

-cll
<3l

>
®

=5.3912x107s

,_..
I

Planck time:

o
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All in the timing

The neutron-star merger appeared only as a point source

on the edge of a distant galaxy. Nevertheless, astrophysicists
dissected the event and its aftermath by tracking the various
types of radiation it emitted at different times.

Optical and ——&
infrared light
Gravitational waves Accretion —s

disk

Kilonova

Colliding
neutror'stars
Gamma rays
X-rays and
radio waves

5

T-100 seconds

The neutron stars spiral close
together and radiate gravitational
waves that trigger ultrasensitive
detectors on Earth.

http://www.sciencemagazinedigital.org/sciencemagazine/22 december 2017?sub id=d4IGvcbOngxn&u1=41644052&p

T+2 seconds

Orbiting detectors spot a
short gamma ray burst,
produced by jets of material
shooting through the debris
at near-light-speed.

T+11 hours

Optical and infrared
telescopes locate a “kilonova™
that glows a telltale red from
the radioactivity of newly
forged heavy elements.

T+2 weeks
Radio dishes and orbiting
x-ray telescopes spot the

source, perhaps as the slowing

jets broadcast radiation in
wider cones.
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http://chartasg.people.cofc.edu/chartas/Teaching files/phys412 ch4.pdf
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